State of Hawaii DEPARTMENT OF LAND AND NATURAL RESOURCES Division of Aquatic Resources Honolulu, Hawaii 96813 June 9, 2011 Board of Land and Natural Resources Honolulu, Hawaii Request for Authorization and Approval to Issue a Papahānaumokuākea Marine National Monument Research Permit to Dr. Brian Bowen, University of Hawaii, Hawaii Institute of Marine Biology, for Access to State Waters to Conduct Genetic Survey Activities The Division of Aquatic Resources (DAR) hereby submits a request for your authorization and approval for issuance of a Papahānaumokuākea Marine National Monument research permit to Dr. Brian Bowen, associate researcher, University of Hawaii, Hawaii Institute of Marine Biology, pursuant to § 187A-6, Hawaii Revised Statutes (HRS), chapter13-60.5, Hawaii Administrative Rules (HAR), and all other applicable laws and regulations. The research permit, as described below, would allow entry and research activities to occur in Papahānaumokuākea Marine National Monument (Monument), including the NWHI State Marine Refuge and the waters (0-3 nautical miles) surrounding the following sites: - Nihoa Island - Necker Island (Mokumanamana) - French Frigate Shoals - Gardner Pinnacles - Maro Reef - Laysan Island - Lisianski Island, Neva Shoal - Pearl and Hermes Atoll - Kure Atoll The activities covered under this permit would occur between June 1, 2011 and October 31, 2011. The proposed activities are largely a renewal of work previously permitted and conducted in the Monument. New activities in this application include the addition of 9 invertebrates and one plant species for genetic connectivity studies. # **INTENDED ACTIVITIES:** The purpose of these activities is a genetic survey of 11 shallow reef fishes, plus 8 mesophotic reef fishes, 9 mesophotic invertebrates, and one mesophotic plant species, designed to address the level of isolation between shallow and mesophotic (deep reefs, 30-150 meters) ecosystems across the Hawaiian Archipelago, and especially throughout Papahanaumokuakea Marine National Monument. To carry out this survey, the applicant is requesting to collect target reef fish, invertebrate and algal species. The target species (see collection list at the end of application, item F-2a) are chosen to be abundant and widespread in the archipelago, easy to identify, and easy to collect. No more than 10 specimens/species would be taken at any single island or atoll. Whenever possible, the applicant samples non-lethally and removes a rice-grain sized piece of fin or tissue and releases the animal in the location from which it was collected. Although significant progress has been made in nonlethal sampling for reef fishes, most specimens are collected with polespears. The applicant recognizes that it is important to make maximum use of specimens, especially when they are derived from lethal collections. Towards this end, he has coordinated fish species lists with parallel projects by HIMB researchers Eric Franklin (who would use the specimens to resolve age, growth, diet, and other aspects of natural history) and Greta Aeby (who would examine the specimens for a parasitic nematode that has been detected in the Monument). The research project has the following specific goals and objectives: - 1. Sample 11 species of shallow reef fishes - 2. Sample 8 species of mesophotic reef fishes - 3. Collect non-lethal tissue biopsies of 9 species of mesophotic invertebrates (except oysters which are collected whole) - 4. Collect biopsies from one species of aquatic plant - 5. Assess level of connectivity between shallow and mesophotic reefs to determine if deep reefs are acting as a refuge for shallow reef organisms The Applicant's original permit application included the use of clove oil within the sampling methodology. This aspect of the sampling design has been removed and as such the request to use clove oil has been withdrawn. The activities proposed by the applicant directly support the Monument Management Plan's priority management needs 3.1 – Understanding and Interpreting the NWHI (through action plan 3.1.1 – Marine Conservation Science). The activities described above may require the following regulated activities to occur in State waters: | \boxtimes | Removing, moving, taking, harvesting, possessing, injuring, disturbing, or damaging | |-------------|---| | | any living or nonliving monument resource | | \boxtimes | Possessing fishing gear except when stowed and not available for immediate use during | | | passage without interruption through the Monument | | \boxtimes | Swimming, snorkeling, or closed or open circuit SCUBA diving within any Special | | | Preservation Area or Midway Atoll Special Management Area | # **REVIEW PROCESS:** The permit application was sent out for review and comment to the following scientific and cultural entities: Hawaii Division of Aquatic Resources, Hawaii Division of Forestry and Wildlife, Papahānaumokuākea Marine National Monument (NOAA/NOS), NOAA Pacific Islands Regional Office (NOAA-PIRO), United States Fish and Wildlife Service Hawaiian and Pacific Islands National Wildlife Refuge Complex Office, and the Office of Hawaiian Affairs (OHA). In addition, the permit application has been posted on the Monument Web site since March 10th, giving the public an opportunity to comment. The application was posted within 40 days of its receipt, in accordance with the Monument's Public Notification Policy. # Comments received from the scientific community are summarized as follows: Scientific reviews support the acceptance of this application. #### Concern raised: 1. What are the sample sizes of black coral samples? The Applicant requests 3-5cm tissue samples (per individual colony) from 30-50 individuals per atoll/island. # Comments received from the Native Hawaiian community are summarized as follows: Cultural reviews support the acceptance of this application. No concerns were raised. # Comments received from the public are summarized as follows: No comments were received from the public on this application. # Additional reviews and permit history: | Are there other relevant/necessary permits or environments | onmental reviews | that hav | e or will | be issued | |--|------------------|----------|-------------|-----------| | with regard to this project? (e.g. MMPA, ESA, EA) | Yes | No | \boxtimes | | | If so, please list or explain: | | | | | - The proposed activities are in compliance with the National Environmental Policy Act. - The Department has made an exemption determination for this permit in accordance chapter 343, HRS, and Chapter 11-200, HAR. See Attachment ("DECLARATION OF EXEMPTION FROM THE PREPARATION OF AN ENVIRONMENTAL ASSESSMENT UNDER THE AUTHORITY OF CHAPTER 343, HRS AND CHAPTER 11-200 HAR, FOR PAPAHĀNAUMOKUĀKEA MARINE NATIONAL MONUMENT RESEARCH PERMIT TO DR. BRIAN BOWEN, HAWAII INSTITUTE OF MARINE BIOLOGY, FOR ACCESS TO STATE WATERS TO CONDUCT GENETIC SURVEY ACTIVITIES UNDER PERMIT PMNM-2011-025") | Has Applicant been granted a permit from the State in the past? Yes | \boxtimes | No | | |---|-------------|----|--| | If so, please summarize past permits: | | | | The applicant was granted permits DLNR/NWHI/06R004, PMNM-2007-032, PMNM- | 2008-046, PM
through 2010. | PMNM-2009-044, and PMNM-2010-038 to conduct similar work in 20 10 . | | | | | | |-------------------------------|--|------------|--|----------|-------------|--| | Have there been any | a) violations:b) Late/incomplete post-activity reports: | Yes
Yes | | No
No | \boxtimes | | | · | elevant concerns from previous permits? | Yes | | No | \boxtimes | | | CTAFE ODINIONI. | | | | | | | # STAFF OPINION: DAR staff is of the opinion that Applicant has properly demonstrated valid justifications for his application and should be allowed to enter the NWHI State waters and to conduct the activities therein as specified in the application with certain special instructions and conditions, which are in addition to the Papahānaumokuākea Marine National Monument Research Permit General Conditions. All suggested special conditions have been vetted through the legal counsel of the Co-Trustee agencies (see Recommendation section). ## MONUMENT MANAGEMENT BOARD OPINION: The MMB is of the opinion that the Applicant has met the findings of Presidential Proclamation 8031 and this activity may be conducted subject to completion of all compliance requirements. The MMB concurs with the special conditions recommended by DAR staff. ## **RECOMMENDATION:** Based on the attached proposed declaration of exemption prepared by the department after consultation with and advice of those having jurisdiction and expertise for the proposed permit actions: - 1. That the Board declare that the actions which are anticipated to be undertaken under this permit will have little or no significant effect on the environment and is therefore exempt from the preparation of an environmental assessment. - 2. Upon the finding and adoption of the department's analysis by the Board, that the Board delegate and authorize the Chairperson to sign the declaration of exemption for purposes of recordkeeping requirements of chapter 343, HRS, and chapter 11-200, HAR. - 3. That the Board authorize and approve a Research Permit to Dr. Brian Bowen, Hawaii Institute of Marine Biology, with the following special conditions: - a. This permit is not to be used for nor does it authorize the sale of collected organisms. Under this permit, the authorized activities must be for noncommercial purposes not involving the use or sale of any organism, by-products, or materials collected within the Monument for obtaining patent or
intellectual property rights. - b. The permittee may not convey, transfer, or distribute, in any fashion (including, but not limited to, selling, trading, giving, or loaning) any coral, live rock, or organism collected under this permit without the express written permission of the Co-Trustees. - c. To prevent introduction of disease or the unintended transport of live organisms, the permittee must comply with the disease and transport protocols attached to this permit. - d. Tenders and small vessels must be equipped with engines that meet EPA emissions requirements. - e. Refueling of tenders and all small vessels must be done at the support ships and outside the confines of lagoons or near-shore waters in the State Marine Refuge - f. No fishing is allowed in State Waters except as authorized under State law for subsistence, traditional and customary practices by Native Hawaiians. Respectfully submitted, Fands Outro Administrator APPROVED FOR SUBMITTAL William J. Aila, Jr. Chairperson | | | | 8 | |--|--|--|---| | | | | | | | | | | Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 1 of 27 # Papahānaumokuākea Marine National Monument **RESEARCH Permit Application** NOTE: This Permit Application (and associated Instructions) are to propose activities to be conducted in the Papahānaumokuākea Marine National Monument. The Co-Trustees are required to determine that issuing the requested permit is compatible with the findings of Presidential Proclamation 8031. Within this Application, provide all information that you believe will assist the Co-Trustees in determining how your proposed activities are compatible with the conservation and management of the natural, historic, and cultural resources of the Papahānaumokuākea Marine National Monument (Monument). ## ADDITIONAL IMPORTANT INFORMATION: - Any or all of the information within this application may be posted to the Monument website informing the public on projects proposed to occur in the Monument. - In addition to the permit application, the Applicant must either download the Monument Compliance Information Sheet from the Monument website OR request a hard copy from the Monument Permit Coordinator (contact information below). The Monument Compliance Information Sheet must be submitted to the Monument Permit Coordinator after initial application consultation. - Issuance of a Monument permit is dependent upon the completion and review of the application and Compliance Information Sheet. # INCOMPLETE APPLICATIONS WILL NOT BE CONSIDERED Send Permit Applications to: Papahānaumokuākea Marine National Monument Permit Coordinator 6600 Kalaniana'ole Hwy. # 300 Honolulu, HI 96825 nwhipermit@noaa.gov PHONE: (808) 397-2660 FAX: (808) 397-2662 SUBMITTAL VIA ELECTRONIC MAIL IS PREFERRED BUT NOT REQUIRED. FOR ADDITIONAL SUBMITTAL INSTRUCTIONS, SEE THE LAST PAGE. RESEARCH F-201 Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 2 of 27 # Papahānaumokuākea Marine National Monument Permit Application Cover Sheet This Permit Application Cover Sheet is intended to provide summary information and status to the public on permit applications for activities proposed to be conducted in the Papahānaumokuākea Marine National Monument. While a permit application has been received, it has not been fully reviewed nor approved by the Monument Management Board to date. The Monument permit process also ensures that all environmental reviews are conducted prior to the issuance of a Monument permit. # **Summary Information** Applicant Name: Bowen, Brian W. **Affiliation:** Hawaii Institute of Marine Biology Permit Category: Research **Proposed Activity Dates:** 5/1/11 - 10/31/11 Proposed Method of Entry (Vessel/Plane): RV Hi'ialakai **Proposed Locations:** Shallow reefs and mesophotic reef habitats (1 - 400 feet depth), focused on Kure, Midway, Pearl & Hermes, Lisianski, Laysan, Maro Reef, Gardner Pinnacles, French Frigate Shoals, Mokumanmana, and Nihoa. However, we request latitude to sample other regions as weather and opportunity dictate. # Estimated number of individuals (including Applicant) to be covered under this permit: Estimated number of days in the Monument: 55 ## **Description of proposed activities:** (complete these sentences): a.) The proposed activity would... be a genetic survey of 11 shallow reef fishes, plus 8 mesophotic reef fishes, 9 mesophotic invertebrates, and one mesophotic plant species, designed to address the level of isolation between shallow and deep reef ecosystems across the Hawaiian Archipelago, and especially throughout the Papahanaumokuakea Marine National Monument. Specimens will be collected on deep reefs to evaluate the hypothesis that these mesophotic reefs can serve as refugia to replenish shallow reefs. Genetic studies can validate or refute this hypothesis, which has clear implications for management and conservation of biological resources. Deep dives during the permit periods in 2009 - 2010 were used to select species for genetic analysis (ones that are abundant and feasible to collect). In addition, we wish to collect specimens of any new species encountered at depths greater than 130 feet, for genetic characterization, description, and vouchering in the Bishop Museum (see Appendix 1, opportunistic collections). This is an essential activity to characterize the biodiversity of the Monument, and will only be invoked in cases where species are sufficiently abundant (encounter rate of 5+ per hour) to sustain collections without adverse impact. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 3 of 27 - b.) To accomplish this activity we would survey 19 fishes, 9 invertebrate, and one plant species at locations across the entire archipelago, using polespears and narcotics to collect fish, nonlethal tissue biopsies for invertebrates (except the oysters which are collected whole) and small biopsies from a plant, and using DNA sequencing technology to resolve novel evolutioanry lineages, genetic diversity and connectivity among reef habitats. - c.) This activity would help the Monument by ... determining whether the Monument is a series of relatively fragile (isolated) ecosystems, or whether individual reef habitats are connected in a larger and more robust ecosystem. There is also a concern about whether the NWHI serves as a source of larvae to replenish depleted fisheries in the main Hawaiian Islands. The assays of population connectivity outlined here will address these issues in a format that has statistical power and scientific credibility. For example, the most recent findings from this research indicate that the Yellow Tang (Zebrasoma flavescens) is divided into 4-7 isolated populations within the Hawaiian Archipelago, including three populations in the PMNM (Eble et al. Accepted). This fish is heavily harvested for the ornamental fish trade, and so findings will realign management units for this species. Findings also indicate some connectivity between the Main Hawaiian Islands and the lower NWHI. Other information or background: To preserve biodiversity, it is important to know how it is arises (Bowen & Roman 2005). While the main objective is to assess genetic connectivity among shallow reef habitats, a "value added" component is that we can assess the age and origin of Hawaiian fauna as well as the age and origins of populations on each island. A genealogical approach to relationships among mtDNA haplotypes will indicate whether the closest relatives to the Hawaiian fauna lie predominantly to the West (Ogasawara Arch, Wake Island, or Marshall Islands) or to the South (Johnston Atoll, Line Islands; Gosline 1955; Maragos & Jokiel 1986; Maragos et al. 2004). In these cases, populations of the widespread Indo-Pacific species will be compared to the Hawaiian endemic. The geographic source of the Hawaiian form (especially Hawaiian endemics) will be resolved with parsimony networks and phylogenetic tools (see Methods), and the age of colonization events will be estimated with the mtDNA molecular clock. Reef fauna typically have a pelagic phase (eggs and larvae), which lasts 20-60 days, followed by settlement onto a reef where they remain through juvenile and adults stages. Long distance dispersal is accomplished almost exclusively during the pelagic larval phase. However, the geographic limits of such dispersal are uncertain (Bowen et al. 2006a; 2006b; Weersing & Toonen 2009). Recent research shows that effective dispersal of marine larvae can fall short of their potential (Swearer et al. 2002). This may be particularly true of the damselfishes, as recent evidence indicates (Ramon et al. 2008), and so we have added four damselfish species to this investigation. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 4 of 27 Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 5 of 27 # **Section A - Applicant Information** | 1. Applicant | |--| | Name (last, first, middle initial): Bowen, Brian W. | | Title: Research Professor | | 1a. Intended field Principal Investigator (See instructions for more information): Randall Kosaki for cruise August - September 2011 | | 2. Mailing address (street/P.O. box, city, state, country, zip): Hawaii Institute of Marine Biology, | | Phone: | | Fax: | | Email: | | For students, major professor's name, telephone and email address: | | 3. Affiliation (institution/agency/organization directly related to the proposed project):
Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai | | | | 4. Additional persons to be covered by permit. List all personnel roles and names (if known at time of application) here (e.g. John Doe, Research Diver; Jane Doe, Field Technician): Randall Kosaki (Ph.D., Research Diver, PMNM), Dan Wagner (Graduate student, Research diver, HIMB), Ray Boland (Research diver and divernaster, NMFS), Richard Pyle (Research | RESEARCH 5 diver and collector, Bishop Museum), Greg McFall (Research diver and collector, ONMS), Anthony Montgomery (Research diver and collector, USFWS), Iria Fernandez (Post-doctoral Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 6 of 27 scientist, research diver and collector, HIMB), Richard Coleman (Graduate student, Research diver and collector, HIMB), Joseph DiBattista (Post-doctoral scientist, research diver and collector, HIMB), Carl Meyer (Post-doctoral scientist, research diver and collector, HIMB), Christie Wilcox (Graduate student, Research diver and collector, HIMB), Derek Skillings (Graduate student, Research diver and collector, HIMB), Robert Toonen (Associate Professor, Research diver and collector, HIMB), Keo Lopes (Research diver and collector, UH Dive safety Program), William Love (Research diver and collector, UH Dive safety Program) The core HIMB team covered under this permit application for fish, invertebrate, and plant collections include Bowen, Wagner, Fernandez, Coleman, DiBattista, Wilcox, Skillings, and Toonen (although only two to four will actually participate on any single cruise). Kosaki has agreed to be field P.I. in the event that Bowen cannot participate on the September cruise. Boland, Pyle, McFall, and Montgomery are members of the mesophotic team, covered under a separate permit application, who have agreed and are qualified to collect specimens. Carl Meyer has a separate permit application to tag and monitor large predators, and has agreed to collect fish where possible. Lopes and Love are UH dive safety officers who will participate in multiple activities including trimix dives (under Kosaki), predator monitoring (under Meyer) and tissue collections for genetic analysis (under Bowen and field P.I. Kosaki). Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 7 of 27 # **Section B: Project Information** | 5a. Project location(s): Nihoa Island Necker Island (Mokumanamana) French Frigate Shoals Gardner Pinnacles Maro Reef Laysan Island Lisianski Island, Neva Shoal Pearl and Hermes Atoll Midway Atoll Kure Atoll Other | Land-based | Ocean Based Shallow water | Deep water | |---|--|--|--| | NOTE: There is a fee schedule for peopessel and aircraft. | ple visiting Midway | Atoll National Wildlif | e Refuge via | | Kure Atoll -178.19623585400 23 Kure Atoll -178.45987884800 23 Kure Atoll -178.46070791400 25 Midway Atoll -177.19638223300 25 Midway Atoll -177.19721129900 25 Midway Atoll -177.52800864100 25 Midway Atoll -177.52800864100 25 Pearl and Hermes Atoll -176.088 Pearl and Hermes Atoll -175.632 Pearl and Hermes Atoll -175.632 Pearl and Hermes Atoll -176.089 Lisianski Island -173.6729257096 Lisianski Island -174.2309515586 Lisianski Island -174.2309515586 Laysan Island -171.47900122300 25 Laysan Island -171.47725234300 25 Laysan Island -171.97918092500 25 Maro Reef -170.18133220600 25 Maro Reef -170.17958332600 25 Maro Reef -171.00505472200 25 | 89162600 28.045
89162600 27.707
54062900 27.706
00 26.251507711
00 25.8394270840
00 25.8394270840
00 26.251507711
5.96027179830
5.65596666490
5.65771554490
5.96202067840
5.69968866680
5.21524888540
5.69968866680 | 00
00
20 | | Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 8 of 27 | Gardner Pinnacles | -167.7508704 | 17400 | 24.34878019150 | |----------------------|-------------------------|--------|----------------| | Gardner Pinnacles | -168.3622181 | 1900 | 24.35132747340 | | Gardner Pinnacles | -168.3647654 | 10100 | 25.26070709440 | | French Frigate Shoa | ls -165.9346585 | 1400 | 23.94630965900 | | French Frigate Shoa | ls -165.9346585 | 1400 | 23.56421738120 | | French Frigate Shoal | ls - 166.4568512 | 9400 | 23.56421738120 | | French Frigate Shoal | ls -166.4568512 | 9400 | 23.94630965900 | | Necker Island -164. | 13627752700 | 23.717 | 05429230 | | Necker Island -164. | 13373024500 | 23.205 | 05064020 | | Necker Island -164.9 | 92084033700 | 23.205 | 05064020 | | Necker Island -164.9 | 92338761900 | 23.719 | 60157420 | | Nihoa Island -161.6 | 66031956700 | 23.238 | 16530420 | | Nihoa Island -161.6 | 66286684900 | 22.940 | 13332760 | | Nihoa Island -162.0 | 05005369100 | 22.942 | 68060940 | | Nihoa Island -162.0 | 05260097200 | 23.235 | 61802240 | | | | | | Preservation Area or Midway Atoll Special Management Area 5b. Check all applicable regulated activities proposed to be conducted in the Monument: Removing, moving, taking, harvesting, possessing, injuring, disturbing, or damaging any living or nonliving Monument resource Drilling into, dredging, or otherwise altering the submerged lands other than by anchoring a vessel; or constructing, placing, or abandoning any structure, material, or other matter on the submerged lands Anchoring a vessel Deserting a vessel aground, at anchor, or adrift Discharging or depositing any material or matter into the Monument Touching coral, living or dead Possessing fishing gear except when stowed and not available for immediate use during passage without interruption through the Monument Attracting any living Monument resource Sustenance fishing (Federal waters only, outside of Special Preservation Areas, Ecological Reserves and Special Management Areas) Subsistence fishing (State waters only) Swimming, snorkeling, or closed or open circuit SCUBA diving within any Special Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 9 of 27 # 6 Purpose/Need/Scope State purpose of proposed activities: The proposed research is a genetic survey of reef fishes, invertebrates, and one common plant, primarily designed to address the issue of population connectivity across the PMNM. We will survey approximately 29 species across the entire archipelago, using DNA sequencing technology. Management need: An ongoing issue for management of the NWHI is whether this is a series of relatively fragile (isolated) ecosystems, or whether reef habitats are connected in a larger and more robust ecosystem. There is also a concern about whether the NWHI serves as a source of larvae to replenish depleted fisheries in the main Hawaiian Islands. The assays of population connectivity outlined here will address these issues in a format that has statistical power and scientific credibility. The primary purpose of the proposed research is to define the level of isolation among reef communities in the NW Hawaiian archipelago. How fragile are the geographically isolated reef habitats of the NWHI? If these habitats are highly connected by larval dispersal, then any one of them can recover quickly from human or natural perturbation. If they are isolated, they have to recover without significant input from other islands and atolls. Objectives: The objective of this permit request is a genetic (mtDNA) survey of fish and invertebrates across the NWHI to assess the level of connectivity among isolated reef habitats. We can accomplish this with samples of 30 - 50 specimens/species/location. Each location is defined as an atoll or reef, and collections will be made at a low density of approximately 10 individuals per hectare with nets, polespears, and fish narcotic (clove oil or quinaldine). The target species are chosen to be abundant and widespread in the archipelago, easy to identify, and easy to collect. Every effort is made to minimize the impact of these collections on the natural communities. Management benefits: These data will provide information on connectivity required for management, and can also detect cryptic endemic species (DiBattista et al. 2011) and document the patterns and history of species entering the Hawaiian Archipelago. Furthermore, by documenting the pattern and magnitude of connectivity in a diverse set of taxa, we can determine if there are general patterns that can guide management decisions for understudied species (Toonen et al. 2011). The genetic surveys of connectivity among reef habitats substantially augment the scientific foundation for conservation measures. Specifically, this research will establish the boundaries of isolated reef ecosystems of the NW Hawaiian Islands. Each ecosystem is an
independent management unit. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 10 of 27 This is a multiyear project for which the first round of data on shallow reef connectivity has been published (see references below). One outcome is that the endemic fish species seem to have more population structure than the widespread Pacific species (Eble et al. 2009). This somewhat counterintuitive finding indicates that the endemic species are poor dispersers. Once they colonize Hawaii, they are unable to maintain genetic connectivity with the source population outside the Hawaiian Archipelago (DiBattista et al. 2011). This finding, combined with the restricted range of endemic species, indicates a management concern for endemic species. 7. Answer the Findings below by providing information that you believe will assist the Co-Trustees in determining how your proposed activities are compatible with the conservation and management of the natural, historic, and cultural resources of the Monument: The Findings are as follows: a. How can the activity be conducted with adequate safeguards for the cultural, natural and historic resources and ecological integrity of the Monument? Our first step is to consult Hawaiian cultural practioners to identify the special locations and activities that could infringe on kanaka maoli spiritual beliefs. In pursuit of this goal, I have requested guidance from the Office of Hawaiian Affairs, and have reminded my research team that this training is essential to a successful project. Team members have already received some guidance in the first six years of this project, including a review of the kapu principles that have promoted ecosystem health and sustainability. We also recognize the tradition of the mano aumakuas, and for this reason we refrain from lethal sampling of sharks. To protect natural resources, we abide by the principles of taking only the absolute minimum necessary to provide the information required by the Proclamation for protection of the Monument. This research team is very experienced and knowledgable about what organisms are sensitive to touch or contact, and we minimize contact with live coral stands. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 11 of 27 To provide adequate protection of historical locations and objects, we do not set foot on uninhabited islands, and we do not touch or disturb submerged artifacts. We maintain a strict policy of no contact. To maintain cultural integrity, we seek advice from the Office of Hawaiian Affairs, and Hawaiian cultural practitioners. We restrict lethal sampling to common, widespread, and abundant species that number in the millions. We collect at low density in any one area and spread the collections across multiple locations. Our collections total a few kilograms per island or atoll, and are miniscule when contrasted with the estimated 30,000 tons of fish taken by ulua and other large predators every year at a single atoll (Sudekum et al. 1991; Freidlander and DeMartini 2002). b. How will the activity be conducted in a manner compatible with the management direction of this proclamation, considering the extent to which the conduct of the activity may diminish or enhance Monument cultural, natural and historic resources, qualities, and ecological integrity, any indirect, secondary, or cumulative effects of the activity, and the duration of such effects? We are fully compliant with conditions described in the Findings of Presidential Proclamation 8031, particularly Section 3.a.i.A-D concerning the compatibility with management direction of the proclamation. These concerns also include ecological integrity and minimal impact. This research is mandated by the Proclamation directive to maintain ecosystem integrity. We make every effort to maximize management benefits, and minimize negative impacts to the system, including decontamination between locations as outlined in the Procedures below. We believe that we have implemented every reasonable safeguard for the resources and ecological integrity of the Monument in our research, and there is no detectable impact from our research sampling. c. Is there a practicable alternative to conducting the activity within the Monument? If not, explain why your activities must be conducted in the Monument. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 12 of 27 journal Science (Dawson et al. 2006). There is no practical alternative to conducting this research in the Monument because it is a description of the Monument from the perspective of connectivity and isolation among reef habitats. Clearly we have to sample habitats within the NWHI to resolve connectivity in this region. d. How does the end value of the activity outweigh its adverse impacts on Monument cultural, natural and historic resources, qualities, and ecological integrity? The end value of the research clearly outweighs the imperceptible impacts from our sampling. Our collections of a few kilograms of fish and invertebrates, spread across thousands of hectares, are miniscule compared to the tens of thousands of tons harvested naturally by apex predators (Sudekum et al. 1991; Freidlander and DeMartini 2002). In contrast, reef connectivity data will have a direct positive impact in the identification of vulnerable locations and species, and will inform the assessment of hazards for atolls and islands of the the Monument (Toonen et al. 2011). The connectivity issue is identified as an essential foundation for reef management in the e. Explain how the duration of the activity is no longer than necessary to achieve its stated purpose. This is an ongoing multi-year project that will require several more years of collecting activities. - f. Provide information demonstrating that you are qualified to conduct and complete the activity and mitigate any potential impacts resulting from its conduct. - P.I. Bowen and Robert Toonen will lead the project, with 20 years experience in this field, including four prior expeditions to the NWHI and over 100 scientific publications pertaining to reef biodiversity, endangered species, and conservation. They are known to the PMNM staff, DAR staff, and USFWS staff, and are clearly qualified to perform this research. Field P.I. Randall Kosaki (Ph.D.) is the veteran of at least six previous PMNM expeditions and is thoroughly qualified to identify and capture permitted species with minimal collatoral damage. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 13 of 27 g. Provide information demonstrating that you have adequate financial resources available to conduct and complete the activity and mitigate any potential impacts resulting from its conduct. The field-based component of this project is supported by yet to be determined ship time on the NOAA research vessel Hiialakai, a line item in the budget of the Monument. Subsequent lab-based research is supported by National Science Foundation (grants OCE-0903129 to B. Bowen), and the HIMB-NWHI Coral Reef Research Partnership (NMSP MOA 2005-008/66882). h. Explain how your methods and procedures are appropriate to achieve the proposed activity's goals in relation to their impacts to Monument cultural, natural and historic resources, qualities, and ecological integrity. The genetic methods outlined herein have been employed by Bowen and Toonen in over 100 peer-reviewed publications, and are widely recognized as appropriate for the proposed activity. The fact that both Toonen and Bowen have been awarded highly-competitive NSF grants to expand these activities speaks to the quality of the research. The use of genetic sampling is widely regarded as the most efficient and robust way in which to answer questions of connectivity on these scales. To promote historical and cultural integrity, we completely avoid sacred sites and historical sites, we don't set foot on uninhabited islands, and we don't sample species that are designated as kapu (such as moi and mano). Statistical rigor requires an optimum sample size of 30-50 should be obtained. Therefore, in the interest of maintaining statistical rigor while minimizing the number of samples collected, our target sample size is 30/location for most fish species, and 50/location for nonlethal invertebrate and plant sampling. All species in our list are common reef organisms that can easily sustain such collection pressure. All scuba equipment is soaked in a bleach solution between sampling locations, in compliance with decontamination protocols. i. Has your vessel has been outfitted with a mobile transceiver unit approved by OLE and complies with the requirements of Presidential Proclamation 8031? Yes Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 14 of 27 j. Demonstrate that there are no other factors that would make the issuance of a permit for the activity inappropriate. This is a continuation of research efforts that have been conducted for five years and through the entire history of the Monument. During these previous efforts, there have been no problems with permit violations by this research team, no safety issues, and no complaints of offensive behavior. In these circumstances there are no other factors that would make the issuance of the permit inappropriate. #### 8. Procedures/Methods: #### FIELD METHODS The fish and invertebrate species listed in Appendix 1 inhabit shallow and mesophotic reefs and are accessible via snorkeling and scuba dives. The primary methodology for collecting fishes is with the use of Hawaiian polespears, but we wish to supplement this with a fish narcotic administered with small squirt bottles to collect fishes in crevasses (such as cardinalfish) and in mesophotic habitats where time is short and diver safety (due to
sharks during long decompression stops) is a consideration. Abundant evidence from over a dozen field studies have shown that the fish narcotics clove oil and quinaldine do not harm corals or other invertebrates (Japp & Wheaton 1975; Munday & Wilson 1997; Robertson & Smith-Vaniz 2010), and these narcotics can be precisely directed at small schools of fish (cardinalfish and mesophotic damselfish in our case) to avoid bycatch. We wish to use both clove oil and quinaldine this year only; the latter is more effective at shallow depths, but we need to guage the performance of both at mesophotic depths under actual field conditions. Notably, fish that are dosed but not collected regain alertness within a couple of minutes and return to habitat; these narcotics are not lethal at the doses proposed here (approximately 30-50 ppm quinaldine, 100 ppm clove oil). Alternative methods such as hook and line fishing are not as selective, whereas narcotics and spearing allows us to collect only the species we need while avoiding unnecessary bycatch. For invertebrates we sample non-lethally and remove a rice-grain sized piece of tissue (biopsy of less than one square cm) and release the animal in the location from which it was collected. The single exception is Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 15 of 27 the winged oyster, which we collect whole. We have made significant progress in nonlethal sampling, however most fish specimens are collected with polespears. Algae specimens will be approximately one square cm harvested nonlethally from unrelated (spacially distinct) individuals, and stored in our standard salt-DMSO buffer, which has been shown to preserve the integrity of plant biomolecules (Shoaf 1976). All coral collections, particularly black corals, will be made in compliance with state regulations. Statistical rigor requires a minimum sample size of 30 individuals per location. In studies examining the statistical power for inferring connectivity based on molecular tools, Ruzzante (1998) showed that sample sizes of less than 30-50 had significant bias and could be misleading. Therefore, in the interest of maintaining statistical rigor while minimizing the number of samples collected, our target sample size is 30/location for most fish species, and 50/location for nonlethal invertebrate and plant sampling. All scuba equipment is soaked in a bleach solution between sampling locations, in compliance with decontamination protocols. LAB METHODS The primary lab methodology in this study will be sequencing of mtDNA cytochrome genes. In most species, a segment of approximately 800 base pairs of the mtDNA cytochrome b or cytochrome oxidase gene will be amplified and sequenced following protocols used daily in our laboratory. DNA sequences will be generated with an ABI 3100 automated DNA sequencer in our lab. Genomic DNA aliquots will be maintained in long-term storage at HIMB so that the genetic material collected will be available for future studies. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 16 of 27 Advances in population genetics, especially coalescence theory, will greatly enhance our analysis, elucidating the history of reef organisms, including the effective population size, founder events, and patterns of population collapse and recovery (Harpending et al. 1998, Beerli and Felsenstein 2001, Emerson et al. 2001). DNA sequence variation will be summarized with standard diversity indices and with an analysis of molecular variance (AMOVA) using ARLEQUIN vers. 2 (Schneider et al. 2000). Phylogenetic methods will include neighbor joining and maximum likelihood algorithms in PAUP version 4.0 (Swofford 2002). Population separations will be defined with using Fst values and the maximum likelihood approach of MIGRATE vers. 1.7.3 (Beerli and Felsenstein 2001). NOTE: If land or marine archeological activities are involved, contact the Monument Permit Coordinator at the address on the general application form before proceeding, as a customized application will be needed. For more information, contact the Monument office on the first page of this application. 9a. Collection of specimens - collecting activities (would apply to any activity): organisms or objects (List of species, if applicable, attach additional sheets if necessary): Common name: See Appendix 1 Scientific name: See Appendix 1 # & size of specimens: See Appendix 1 Collection location: See Appendix 1 Whole Organism Partial Organism 9b. What will be done with the specimens after the project has ended? Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 17 of 27 To the greatest extent possible, specimens will be frozen and vouchered so that future research efforts can use archived material instead of collecting new specimens. Preserved tissue samples suitable for DNA work will be archived at HIMB for future permitted uses. PI Bowen will be responsible for the database which will track each sample and will be the lead contact for persons wishing to access the tissue sample collections. No samples will be provided to researchers outside HIMB until a material transfer agreement is available from the Monument. | 9c. Will the organisms be kept alive after collection? Yes No | |---| | • General site/location for collections: | | Is it an open or closed system? Open Closed | | Is there an outfall? Yes No | | • Will these organisms be housed with other organisms? If so, what are the other organisms? | | • Will organisms be released? | # 10. If applicable, how will the collected samples or specimens be transported out of the Monument? Frozen fish and fin clips for genetic analysis will be transported in the RV Hiialakai. # 11. Describe collaborative activities to share samples, reduce duplicative sampling, or duplicative research: It is incumbent on us to make maximum use of specimens, especially when they are derived from lethal collections. Towards this end, we have coordinated fish species lists with a parallel project by Erik Franklin and Matt Craig. They can use the specimens collected initially for genetic analysis to resolve age, growth, diet, and other aspects of natural history. Bowen will retain specimens until P.I. Franklin has a permit to possess and study the specimens. Further, the nonlethal sampling of apex predators (listed in Appendix 1) will make maximum use of the captures conducted by Carl Meyer and RESEARCH 17 Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 18 of 27 colleagues for tagging studies. Kimberly Tenggardjaja and Giacomo Bernardi at University of California Santa Cruz are conducting parallel studies of reef fish connectivity with damselfishes. Ms. Tenggardjaja participated in 2009 and 2010 cruises, and has spent two months in my lab processing samples, pending the development of a material transfer agreement by the Monument. An electronic database of all samples is available, and will be updated upon completion of the studies outlined here. This database will be searchable against future permit requests and can reduce the need for return trips to collect tissue samples in the NWHI, and prevent duplicative sampling efforts. # 12a. List all specialized gear and materials to be used in this activity: Materials include snorkel and scuba gear (mask, fins, snorkel, wetsuit, tank, BCD), collection bag, polespear, hand nets, fish traps, tissue biopsy tools, and a high resolution digital camera in an underwater housing to photo-document the collections. 12b. List all Hazardous Materials you propose to take to and use within the Monument: Tissue preservative solutions for DNA analyses include: 95% ethanol (EtOH; MSDS attached), and saturated salt buffer with dimethylsulfoxide (DMSO; MSDS attached). Both EtOH and DMSO are commonly sold for human consumption, and should not pose a significant health or environmental risk. Fish narcotics are clove oil (MSDS attached) and quinaldine (MSDS attached), neither are toxic to humans at the doses used here (30 - 100 ppm), although both can irritate eyes at high concentration. # 13. Describe any fixed installations and instrumentation proposed to be set in the Monument: None # 14. Provide a time line for sample analysis, data analysis, write-up and publication of information: Major sampling for the shallow reef connectivity study was completed in 2010, and analysis of specimens is ongoing (e.g. Eble et al. 2009; Craig et al. 2010; Gaither et al. 2010; Wagner et al. 2010; Eble et al. 2011; Stat et al. 2011; Dibattista et al. 2011; Bird Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 19 of 27 et al. 2011, Forsmen et al. 2011, Toonen et al. 2011). Only a few shallow fishes species are requested for this permit, as we refocus our efforts on mesophotic reef connectivity. Data analysis and write-up usually take no more than an additional year, although the turn-around time for some journals can exceed 200 days, so time to publication can still be considerable post-submission of the study. Results from these studies are made available to Monument, FWS, and Hawaii DLNR managers as quickly as possible. Brown-bag luncheons at HIMB allow researchers to highlight important or interesting new results and discuss them with the management personnel. In addition, we hold biannual symposia during which researchers present the most current findings from their ongoing research in the Monument. These efforts ensure that research results are provided to the Monument co-trustees as quickly as they become available. 15. List all Applicants' publications directly related to the proposed project: Craig, M.T., J.A. Eble, D.R. Robertson, B.W. Bowen. 2007. High genetic connectivity
across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae). Marine Ecology Progress Series 334: 245–254. Schultz, J.K., R.L. Pyle, E. DeMartini, and B.W. Bowen. 2007. Genetic homogeneity among color morphs of the flame angelfish, Centropyge loriculus. Marine Biology 151: 167-175. Rocha, L.A., M.T. Craig, and B.W. Bowen. 2007. Phylogeography and the conservation genetics of coral reef fishes. Coral Reefs Invited Review 26: 501-512. Faucci, A., R.J. Toonen & M.G. Hadfield. 2007. Host shift and speciation in a coral-feeding nudibranch. Proceedings of the Royal Society B: Biological Sciences. 274:111-119. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 20 of 27 Wagner, D., S. Kahng & R.J. Toonen. 2007. New report of nudibranch predators of the invasive octocoral Carijoa riisei in the Hawaiian Islands. Coral Reefs 26(2):411. Toonen, R.J. & A.J. Tyre. 2007. If larvae were smart: A simple model for optimal settlement choices of competent larvae. Marine Ecology Progress Series 349:43-61. Bird, C.J., B.S. Holland, B.W. Bowen, and R.J. Toonen. 2007. Contrasting population structure in three endemic Hawaiian limpets (Cellana spp.) with similar life histories. Molecular Ecology 16:3173-3186. Skillings, D. 2008. Laboratory culture of the soft-coral Carijoa riisei. Journal of Young Investigators 15:8. Selkoe, K.A., B.S. Halpern & R.J. Toonen. 2008. Evaluating and ranking the vulnerability of regions within the Papahānaumokuākea Marine National Monument to anthropogenic threats. Aquatic Conservation: Marine and Freshwater Ecosystems 18:1149-1165. Concepcion, G., M. Crepeau, Wagner, D., S.E. Kahng & R.J. Toonen. 2008. An alternative to ITS, a hypervariable, single-copy nuclear intron in corals, and its use in detecting cryptic species within the octocoral genus Carijoa. Coral Reefs 27(2):323-336. Rocha, L.A., M.T. Craig, and B.W. Bowen. 2007. Phylogeography and the conservation genetics of coral reef fishes. Coral Reefs Invited Review 26: 501-512. Rocha, L.A. and B.W. Bowen. 2008. Speciation in coral reef fishes. Journal of Fish Biology 72:1101-1121. Schultz, J.K., J.D. Baker, R.J. Toonen, B.W. Bowen. 2009. Extremely low genetic diversity in the endangered Hawaiian monk seal (Monachus schauinslandi). Journal of Heredity 100:25-33. Forsman, Z., D.J. Barshis, C. Hunter, and R.J. Toonen. 2009. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites. BMC Evolutionary Biology 9:45. Christie, M.R., J.A. Eble. 2009. Isolation and characterization of 23 microsatellite loci in the yellow tang, Zebrasoma flavescens. Mol Ecol Res 9:544-546. Franklin E.C., C. V. Brong, A. R. Dow, and M. T. Craig. 2009. Length-weight and length-length relationships of three endemic butterflyfish species (Chaetodontidae) from coral reefs of the Northwestern Hawaiian Islands, USA. Journal of Applied Ichthyology. 25(5):616-617. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 21 of 27 Selkoe, K.A., B.H. Halpern, C. Ebert, E. Franklin, E. Selig, K. Casey, J. Bruno, R.J. Toonen. 2009. A map of cumulative impacts to a "pristine" coral reef ecosystem, the Papahānaumokuākea Marine National Monument. Coral Reefs 28(3):635-650. Eble, J.A., R.J. Toonen, B.W. Bowen. 2009. Endemism and dispersal: comparative phylogeography of three surgeonfish species across the Hawaiian Archipelago. Marine Biology 156:689–698. Wagner, D., S.E. Kahng & R.J. Toonen. 2009. Observations on the life history and feeding ecology of a specialized nudibranch predator (Phyllodesmium poindimiei), with implications for biocontrol of an invasive octocoral (Carijoa riisei) in Hawaii. Journal of Experimental Marine Biology and Ecology 372:64-74. Weersing, K.A. & R.J. Toonen. 2009. Population genetics, larval dispersal, and demographic connectivity in marine systems. Marine Ecology Progress Series, Feature Article 393:1-12 Chan, Y.L., X. Pochon, M. Fisher, D. Wagner, G.T. Concepcion, S. Kahng, R.J. Toonen and R.D. Gates. 2009. Host genotypes and endosymbiotic dinoflagellate diversity in the coral Leptoseris sampled between 60-100 meter depths. BMC Ecology, Featured Article 9:21. Gaither, M.R., R.J. Toonen, L. Sorenson, B.W. Bowen. 2009. Isolation and characterization of microsatellite markers for the Crimson Jobfish, Pristipomoides filamentosus (Lutjanidae). Conservation Genetics Resources. On line Andrews, K.R., L. Karczmarski, W.W.L. Au, S. Rickards, C.A. Vanderlip, B.W. Bowen, R.J. Toonen. 2010. Rolling stones and stable homes; Social structure, habitat diversity, and population genetics of the Hawaiian spinner dolphin (Stenella longirostris). Molecular Ecology 19:732-748. Gaither, M.R., R.J. Toonen, D.R. Robertson, S. Planes, and B.W. Bowen. 2010. Genetic evaluation of marine biogeographic barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus spp.). Journal of Biogeography 37:133-147. Concepcion, G., S.E. Kahng, M. Crepeau, E.C. Franklin, S. Coles & R.J. Toonen. 2010. Resolving natural ranges and marine invasions in a globally distributed octocoral (genus Carijoa). Marine Ecology Progress Series. 401:113-127. Daly-Engel, T.S., R.D. Grubbs, K.W. Feldheim, B.W. Bowen, R.J. Toonen. 2010. Is multiple paternity beneficial or unavoidable? Low multiple paternity and genetic diversity in the shortspine spurdog shark (Squalus mitsukurii). Marine Ecology Progress Series 403:255-267. Reece, J.S., B.W. Bowen, K. Joshi, V. Goz, A.F. Larson. 2010. Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific. Journal of Heredity 101:391 – 402. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 22 of 27 Gaither, M.R., R.J. Toonen, L. Sorenson, B.W. Bowen. 2010. Isolation and characterization of microsatellite markers for the Crimson Jobfish, Pristipomoides filamentosus (Lutjanidae). Conservation Genetics Resources 2:169-172. Kahng, S.E., H. Spalding, R. Garcia, E. Brokovich, D. Wagner, E. Weil, L. Hinderstein & R.J. Toonen. 2010. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255-275. Concepcion, G.T., N.R Polato, I.B. Baums & R.J. Toonen. 2010. Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conservation Genetics Resources. 2:11-15. Wagner, D., M.R. Brugler, D.M. Opresko, S.C. France, A.D. Montgomery & R.J. Toonen 2010. Using morphometrics, in situ observations and genetic characters to distinguish among commercially valuable Hawaiian black coral species; a redescription of Antipathes grandis Verrill, 1928 (Antipatharia: Antipathidae). Invertebrate Systematics 24:271-290. Craig, M.T., J. Eble, B.W. Bowen. 2010. Origins, ages, and populations histories: Comparative phylogeography of endemic Hawaiian butterflyfishes (genus Chaetodon). Journal of Biogeography 37:2125 – 2136. Stat, M., C.E. Bird, X. Pochon, L. Chasqui, L.J. Chauka, G.T. Concepcion, D. Logan, M. Takabayashi, R.J. Toonen & R.D. Gates. 2011 Variation in Symbiodinium ITS2 Sequence Assemblages among Coral Colonies. PLoS ONE 6(1): e15854. DiBattista, J.D., C. Wilcox, M.T. Craig, L.A. Rocha, B.W. Bowen. 2011. Phylogeography of the Pacific Blueline Surgeonfish Acanthurus nigroris reveals a cryptic species in the Hawaiian Archipelago. Journal of Marine Biology, Article ID 839134 Eble, J.A., L.A. Rocha, M.T. Craig, B.W. Bowen. 2011. Not all larvae stay close to home: Long-distance dispersal in Indo-Pacific reef fishes, with a focus on the Brown Surgeonfish (Acanthurus nigrofuscus). Journal of Marine Biology, Article ID 518516. Toonen, R.J., K.R. Andrews, I.B. Baums, C.E. Bird, C.T. Concepcion, T.S. Daly-Engel, J.A. Eble, A. Faucci, M.R. Gaither, M. Iacchei, J.B. Puritz, J.K. Schultz, D.J. Skillings, M. Timmers, B.W. Bowen. 2011. Defining boundaries for applying ecosystem-based management: A multispecies case study of marine connectivity across the Hawaiian Archipelago. Journal of Marine Biology, Article ID 460173. Rivera, M., K. Andrews, D. Kobayashi, J. Wren, C. Kelley, G. Roderick & R.J. Toonen. Genetic analyses and simulations of larval dispersal reveal distinct populations and directional connectivity across the range of the Hawaiian Grouper (Epinephelus quernus). Journal of Marine Biology, Article ID 765353. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 23 of 27 Wiener, C.S., M. Rivera, R.J. Toonen, J. Leong, R.K. Kosaki, S.A. Karl, K. Keller & H. Johnson. Creating Effective Partnerships in Ecosystem Based Management: A Culture of Science and Management. Journal of Marine Biology, Article ID 518516. Wagner, D., X. Pochon, L. Irwin, R.J. Toonen & R.D. Gates. Azooxanthellate? Most Hawaiian black corals contain Symbiodinium. Proceedings of the Royal Society B: Biological Sciences. Accepted. Timmers, M.A., K. Andrews, C.E. Bird, M.J. deMaintenon, R.E. Brainard & R.J. Toonen,. Widespread dispersal of the crown-of-thorns sea star, Acanthaster planci, across the Hawaiian Archipelago and Johnston Atoll. Journal of Marine Biology, Article ID 934269. Skillings, D., C.E. Bird & R.J. Toonen. Gateways to Hawai'i – genetic population structure of the tropical sea cucumber Holothuria atra. Journal of Marine Biology. In press. Forsman, Z.H., G.T.Concepcion, R.D.Haverkort, R.W.Shaw, J.E.Maragos & R.J.Toonen Ecomorph or Endangered Coral? DNA and Microstructure Reveal Hawaiian Species Complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS ONE In press Iacchei, M. & R.J. Toonen. Caverns, compressed air, and crustacean connectivity: insights into Hawaiian spiny lobster populations. Proceedings of the American Academy of Underwater Sciences in press. Skillings, D.J. & R.J. Toonen. It's just a flesh wound: non-lethal sampling for conservation genetics studies. Proceedings of the American Academy of Underwater
Sciences in press. Toonen, R.J., C. Bird, J. Eble, A. Faucci, G. Concepcion, K. Andrews, D.Skillings, M. Iacchei, I. Baums & B. Bowen. Where have all the larvae gone? Patterns of connectivity in the Hawaiian Archipelago. Proceedings of the American Academy of Underwater Sciences in press. Forsman, Z.H., J.A. Martinez, J.E. Maragos & R.J. Toonen. Resurrection of Porites hawaiiensis Vaughan 1907; a Hawaiian coral obscured by small size, cryptic habitat, and confused taxonomy. Zootaxa In press. Polato, N.R., G.T. Concepcion, R.J. Toonen & I.B. Baums. Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata. Molecular Ecology In press Wagner, D., R.J. Toonen, Y.P. Papastamatiou, R.K. Kosaki, K.A. Gleason, G.B. McFall, R.C. Boland & R.L. Pyle. New records of commercially valuable black corals (Cnidaria: Antipatharia) from the Northwestern Hawaiian Islands. Pacific Science 65: In press. Eble, J., A., R.J. Toonen, L.L. Sorensen, L. Basch, Y. Papastamatiou, B.W. Bowen. Escaping paradise: Larval export from Hawaii in an Indo-Pacific reef fish, the Yellow Tang (Zebrasoma flavescens). Marine Ecology Progress Series In press Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 24 of 27 Randall, J.E., J.D. DiBattista, C. Wilcox. Acanthurus nigros Gunther, a valid species of surgeonfish, distinct from the Hawaiian A. nigroris Valenciennes. Pacific Science 65: In press Bird, C.E., B.S. Holland, B.W. Bowen, R.J. Toonen. Diversification of endemic sympatric limpets (Cellana spp.) in the Hawaiian Archipelago. Molecular Ecology In press Szabo, Z., B.K. Kimokeo, R.J. Toonen & J.E. Randall. On the status of the Hawaiian seahorses Hippocampus hilonis, H. histrix, and H. fisheri. Marine Biological Research. Accepted #### Literature Cited: Arbogast, B.S., Edwards, S.V., Wakeley, J., Beerli, P., Slowinski, J.B. 2002. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Ann. Rev. Ecol. Syst. 33:707-740. Beerli, P and J Felsenstein. 2001. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci USA 98: 4563-4568. Bird, C.E., B.S. Holland, B.W. Bowen, R.J. Toonen. 2011. Diversification of endemic sympatric limpets (Cellana spp.) in the Hawaiian Archipelago. Molecular Ecology In press Bowen, B.W. and J. Roman. 2005. Gaia's handmaidens: the Orlog model for conservation biology. Conservation Biology 19:1037-1043. Bowen, B.W., A.L. Bass, A.J. Muss, J. Carlin, and D.R. Robertson. 2006a. Phylogeography of two Atlantic squirrelfishes (family Holocentridae): Exploring pelagic larval duration and population connectivity. Marine Biology 149:899-913. Bowen, B.W., A. Muss, L.A. Rocha, and W.S. Grant. 2006b. Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. Journal of Heredity 97:1-12. Clement, M, D Posada and KA Crandall. 2000 TCS: a computer program to estimate gene genalogies. Mol. Ecol. 9: 1657-1659. Craig, M.T., J.A. Eble, D.R. Robertson, B.W. Bowen. 2007. High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae). Marine Ecology Progress Series 334:345-354. Dawson, M.N., R.K. Grosberg, L.W. Botsford. 2006. Connectivity in Marine Protected Areas. Science 313:43-44. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 25 of 27 Eble, J.A., R.J. Toonen, B.W. Bowen. 2009. Endemism and dispersal: comparative phylogeography of three surgeonfish species across the Hawaiian Archipelago. Marine Biology 156:689–698. Eble, J., A., R.J. Toonen, L.L. Sorensen, L. Basch, Y. Papastamatiou, B.W. Bowen. Phylogeography and historical demography of the Yellow Tang (Zebrasoma flavescens) indicate a Hawaiian origin for an Indo-Pacific reef fish. Submitted Emerson B, E Pardis, and C. Thebaud. 2001. Revealing the demographic histories of species using DNA sequences. Trends in Ecology and Evolution 16:707-716. Friedlander A.M., DeMartini E.E. 2002. Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264. Harpending, HC, MA Batzer, M Gurven, LB Jorde, AR Rogers, and ST Sherry. 1998. Genetic traces of ancient demography. Proc. Natl. Acad. Sci USA 95:1961-1967. Jaap WC, J Wheaton. 1975. Observation on Florida reef corals treated with fish-collecting chemicals. Florida Marine Research Publications 10: 1-18. Maragos JE, and PL Jokiel. 1986. Reef corals of Johnston Atoll: One of the world's most isolated reefs. Coral Reefs 4:141-150. Maragos, J, D Potts, G Aeby, D Gulko, J Kenyon, D Siciliano and D VanRavenswaay. 2004. 2000-2002 rapid ecological assessment of corals on the shallow reefs of the Northwestern Hawaiian Islands. Part 1: Species and distribution. Pacific Science, 58: 211-230. Munday, P L, SK Wilson. 1997. Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. Journal of Fish Biology 51:931 – 938. Ramon, M.L., P.A. Nelson, E. DeMartini, W.J. Walsh, G. Bernardi. 2008. Phylogeography, historical demography, and the role of post-settlement ecology in two Hawaiian damselfish species. Mar Biol 153:1207-1217. Rivera, MAJ, Kelley CD, and GK Roderick. 2004. Subtle population genetic structure in the Hawaiian grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analyses. Biological Journal of the Linnean Society 81: 449–468. Robertson, D.R. & W.F. Smith-Vaniz. 2010. Using clove oil in collecting coral reef fishes for research. Marine Ecology-Progress Series 401:295 - 302. Ruzzante, D. 1998. A comparison of several measures of genetic distance and population structure with microsatellite data: bias and sampling variance. Can. J. Fish. Aquat. Sci. Vol. 55, 1-14. Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 26 of 27 Schneider, S., Roessli, D., & Excoffier, L. 2000 Arlequin version 2.000, a software for population genetics data anlaysis. Genetics and Biometry Lab, University of Geneva, Geneva, Switzerland. http://anthro.unige.ch/arlequin Schultz, J.K., R.L. Pyle, E. DeMartini, and B.W. Bowen. 2007. Genetic homogeneity among color morphs of the flame angelfish, Centropyge loriculus. Marine Biology 151:167-175. Seutin, G., White, B.N., Boag, P.T., 1991. Preservation of avian blood and tissue samples for DNA analyses. Canadian Journal of Zoology 69: 82-90. Shoaf, W.T. 1976. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnology and Oceanography 21: 926 – 928. Sudekum, A.E., Parrish J.D., Radtke R.L., Ralston S. 1991. Life history and ecology of large jacks in undisturbed, shallow, oceanic communities. Fish Bull 89:493–513. Swearer, S. E., Shima, J. S., Hellberg, M. E., Thorrold, S. R., Jones, G. P., Robertson, D. R., Morgan, S. G., Selkoe, K. A., Ruiz, G. M. & Warner, R. R. 2002. Evidence of self-recruitment in demersal marine populations. Bulletin of Marine Science 70: 251-271. Swofford, DL. 2002 Phylogenetic Analysis Using Parsimony (*and other Methods). Version 4.0b10. Sunderland, MA: Sinauer. Templeton, A. R., Crandall, K. A. & Sing, C. F. 1992 A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 132: 619-633. Toonen, R.J. 2001. Molecular Genetic Analysis of Recruitment and Dispersal in the Intertidal Porcelain Crab, Petrolisthes cinctipes. Ph.D. Dissertation, Center for Population Biology, Section of Evolution and Ecology, University of California, Davis, CA. 325 pp. Toonen, R.J., K.R. Andrews, I.B. Baums, C.E. Bird, C.T. Concepcion, T.S. Daly-Engel, J.A. Eble, A. Faucci, M.R. Gaither, M. Iacchei, J.B. Puritz, J.K. Schultz, D.J. Skillings, M. Timmers, B.W. Bowen. 2011. Defining boundaries for applying ecosystem-based management: A multispecies case study of marine connectivity across the Hawaiian Archipelago. Journal of Marine Biology, Article ID 460173 Papahānaumokuākea Marine National Monument Permit Application - Research OMB Control # 0648-0548 Page 27 of 27 With knowledge of the penalties for false or incomplete statements, as provided by 18 U.S.C. 1001, and for perjury, as provided by 18 U.S.C. 1621, I hereby certify to the best of my abilities under penalty of perjury of that the information I have provided on this application form is true and correct. I agree that the Co-Trustees may post this application in its entirety on the Internet. I understand that the Co-Trustees will consider deleting all information that I have identified as "confidential" prior to posting the application. | | |
 | |-----------|------|------| | Signature | Date | | # SEND ONE SIGNED APPLICATION VIA MAIL TO THE MONUMENT OFFICE BELOW: Papahānaumokuākea Marine National Monument Permit Coordinator 6600 Kalaniana'ole Hwy. # 300 Honolulu, HI 96825 FAX: (808) 397-2662 #### DID YOU INCLUDE THESE? | | Applicant CV/Resume/Biography | |-------------|---| | \boxtimes | Intended field Principal Investigator CV/Resume/Biography | | X | Electronic and Hard Copy of Application with Signature | | \boxtimes | Statement of information you wish to be kept confidential | | X | Material Safety Data Sheets for Hazardous Materials | | e- | | ē. | | |-----|--|----|--| | | | 55 | | | i e | # Appendix 1. Requested Collections for B.W. Bowen The 2010 field season concluded major sampling efforts for the shallow reef connectivity studies. As the proposed activities below indicate, we request only a few fish collections, and
no invertebrate collections, from the shallow reefs. The emphasis this year, for the few remaining shallow species, is on the reef habitats between French Frigate Shoals northwest to Pearl and Hermes Atoll (Maro, Laysan, Lisianski, Gardner). We know that some species show genetic breaks in this region, but existing samples are inadequate to define this more precisely. Notable aspects of this request include the following points: 1) In 2009 we completed sampling of 12 species, and removed them from the list. During the 2010 expeditions, we completed field efforts for an additional 13 fish species, including all remaining wrasses, parrotfishes, and blennies. Results from these species are published (e.g. endemic surgeonfishes, Eble et al. 2009; Montipora corals, Forsman et al. 2010, black corals, Wagner et al. 2010; blueline snapper, Gaither et al. 2010; endemic butterflyfishes, Craig et al. 2010; moray eels, Reece et al. 2010; Blueline Surgeonfish; DiBattista et al. 2011; Brown Surgeonfish, Eble et al. 2011, opihi, Bird et al. In press), in press (Yellow Tang, Eble et al.; Hawaiian seahorse, Szabo et al.), in an advanced state of preparation (Montipora corals, Concepcion et al.; vermetid gastropods, Faucci et al.; blennies, Szabo et al.; Oval Butterflyfish, Bowen et al.), or the subjects of ongoing DNA analyses. The shallow organisms remaining on the list below are all fishes, including five damselfishes, four goatfishes, and one butterflyfish. These remain on the list to allow one more effort at filling gaps in coverage. In addition, we have added one fish to the list, the common and abundant iridescent cardinalfish (*Pristiapogon kallopterus*). This fish may have limited dispersal due to the reproductive behavior of mouthbrooding, and so may help resolve the boundaries of isolated ecosystems in the Monument. - 2) The second (possible) cruise to the Papahanaumokuakea Marine National Monument (September) will include a deep (>130 feet) diving component to assess the health and biodiversity of this reef fauna. We request permission to collect nine common invertebrates, eight common fishes, and one ubiquitous seaweed to further connectivity studies, both between mesophotic habitats and between mesophotic and shallow habitats. Invertebrate collections are made in situ with nonlethal sampling (except for the winged oyster) with a tissue sample about the size of a rice grain. Fish will be collected with polespears and clove oil and quinaldine, fish narcotics that do not harm corals and other invertebrates (Jaap & Wheaton 1975, Munday & Wilson 1997, Robertson & Smith-Vaniz 2010). We also request limited latitude to collect voucher specimens of new species that may be encountered at these depths (see below). - 3) We propose to study black corals at mesophotic depths in the Monument. This research will involve collection of vouchers for comparison with established type specimens to confirm or refute the morphological identification of the Hawaiian antipatharian (black coral) fauna. The black corals are already under revision because the species previously identified as Antipathes dichotoma from Hawaii do not match specimens from the type locality of A. dichotoma in the Mediterranean Sea; as a result, the Hawaiian "A. dichotoma" has now been assigned the new name of Antipathes griggi (Opresko 2009). Likewise, our study over the past year has resulted in the redescription of Antipathes grandis (Wagner et al., in press) from the Main Hawaiian Islands, and on-going collaborations with State and Federal groups interested in the taxonomy and management of these precious corals. The first technical diving to the appropriate depths in the Monument revealed 4 species of black corals never before reported from the NWHI and we now seek to obtain opportunistic voucher collections of unusual colonies to determine how many species are present, and whether the initial species identifications were correct (or a misidentification as described for A. dichotoma above). All collections of black corals will comply with Hawaii state regulations. 4) To facilitate the evaluation of this request, we have divided the list of fish into a shallow reef component (near completion) and a deep reef component (still experimental). As before, to make maximum use of specimens, samples obtained in this project will have multiple uses in other permitted studies, especially the life-history work by Matthew Craig and Eric Franklin, and the disease work by Greta Aeby (separate permit applications pending). # Common name Scientific name No., Size, Locations # SHALLOW REEF COLLECTIONS (< 130 feet depth) #### Family Pomacentridae Hawaiian Sargeant Abudefduf abdominalis 27 all sizes Nihoa 9 all sizes Mokumanamana 0 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 7 all sizes Maro Reef 1 all sizes Laysan 30 all sizes Lisianski 0 all sizes Pearl and Hermes 0 all sizes Midway 0 all sizes Kure Indo-Pacific Sargeant Abudefduf vaigiensis 26 all sizes Nihoa 23 all sizes Mokumanamana 0 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 16 all sizes Laysan 30 all sizes Lisianski 0 all sizes Pearl and Hermes 0 all sizes Midway 29 all sizes Kure Vanderbilt's Chromis Chromis vanderbilti 0 all sizes Nihoa 16 all sizes Mokumanamana 0 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 10 all sizes Laysan 30 all sizes Lisianski 0 all sizes Pearl and Hermes 8 all sizes Midway 0 all sizes Kure Three-spot Chromis Chromis verater 0 all sizes Nihoa 30 all sizes Mokumanamana 0 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 0 all sizes Pearl and Hermes 30 all sizes Midway 0 all sizes Kure Hawaiian Chromis Chromis ovalis 0 all sizes Nihoa 0 all sizes Mokumanamana 0 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 0 all sizes Maro Reef 0 all sizes Laysan 30 all sizes Lisianski 0 all sizes Pearl and Hermes 0 all sizes Midway 27 all sizes Kure #### Family Mullidae Yellowstripe goatfish Mulloidichthys flavolineatus 30 all sizes Nihoa 15 all sizes Mokumanamana3 all sizes French Frigate Shoals30 all sizes Gardner Pinnacles 21 all sizes Maro Reef 21 all sizes Laysan 30 all sizes Lisianski 0 all sizes Pearl and Hermes 0 all sizes Midway 0 all sizes Kure Yellowfin goatfish Mulloidichthys vanicolensis 22 all sizes Nihoa 22 all sizes Mokumanamana 0 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 28 all sizes Maro Reef 24 all sizes Laysan 30 all sizes Lisianski 0 all sizes Pearl and Hermes 0 all sizes Midway 0 all sizes Kure Manybar goatfish Parupeneus mulitfasciatus 0 all sizes Nihoa 8 all sizes Mokumanamana 0 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 29 all sizes Laysan 30 all sizes Lisianski 0 all sizes Pearl and Hermes 0 all sizes Midway 0 all sizes Kure Sidespot goatfish Parupeneus pleurostigma 29 all sizes Nihoa 21 all sizes Mokumanamana 0 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 27 all sizes Mars Park 27 all sizes Maro Reef 0 all sizes Laysan 29 all sizes Lisianski 4 all sizes Pearl and Hermes 0 all sizes Midway 0 all sizes Kure Family Chaetodontidae Threadfin butterflyfish Chaetodon auriga MAXIMUM OF 50 FISH TOTAL 10 all sizes Nihoa 10 all sizes Mokumanamana 10 all sizes French Frigate Shoals 10 all sizes Gardner Pinnacles 10 all sizes Maro Reef 10 all sizes Laysan 10 all sizes Lisianski 10 all sizes Pearl and Hermes 10 all sizes Midway 10 all sizes Kure Family Apogonidae Iridescent cardinalfish Pristiapogon kallopterus 30 all sizes Nihoa 30 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 30 all sizes Kure ## **DEEP REEF COLLECTIONS (> 130 feet)** #### **FISHES** Goldring bristletooth Ctenochaetus strigosus 30 all sizes Nihoa 30 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 30 all sizes Kure Hawaiian Chromis Chromis ovalis 30 all sizes Nihoa 30 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 30 all sizes Kure Whitetail Chromis Chromis leucura 30 all sizes Nihoa 30 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 30 all sizes Kure Three-spot Chromis Chromis verater 30 all sizes Nihoa 30 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 28 all sizes Kure Hawaiian Dascyllus Dascyllus albisella 30 all sizes Nihoa 22 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 30 all sizes Kure Yellowfish soldierfish Myripristis chryseres 30 all sizes Nihoa 30 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 30 all sizes Kure Hawaiian Bigeye Priacanthus meeki 30 all sizes Nihoa 30 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 30 all sizes Kure Turkeyfish/Lionfish Pterois sphex 30 all sizes Nihoa
30 all sizes Mokumanamana 30 all sizes French Frigate Shoals 30 all sizes Gardner Pinnacles 30 all sizes Maro Reef 30 all sizes Laysan 30 all sizes Lisianski 30 all sizes Pearl and Hermes 30 all sizes Midway 30 all sizes Kure | Hawaiian Black Coral | Antipathes griggi | 50 Nihoa | |----------------------|----------------------|-----------------------------------| | | | 50 Mokumanamana | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | | | | 50 Lisianski | | | | 50 Pearl and Hermes | | | | 50 Midway | | | | 50 Kure | | Wire Black Coral | Cirrhipathes anguina | 50 Nihoa | | | | 50 Mokumanamana | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | | | | 50 Lisianski | | | | 50 Pearl and Hermes | | | | 50 Midway | | | | 50 Kure | | Feather Black Coral | Myriopathes ulex | 50 Nihoa | | | | 50 Mokumanamana | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | | | | 50 Lisianski | | | | 50 Pearl and Hermes | | | | 50 Midway | | | | 50 Kure | | Bicolor Gorgonian | Acabaria bicolor | 50 Nihoa | | | | 50 Mokumanamana | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | | | | 50 Lisianski | | | | 50 Pearl and Hermes | | | * | 50 Midway | | | | 50 Kure | | Rubber coral | Palythoa caesia | 50 Nihoa | | | | 50 Mokumanamana | | | | 50 Enomals Entranta Charata | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles 50 Maro Reef | | ε | | 50 Laysan | |-----------------------------|---------------------|---| | | | 50 Lisianski | | | | 50 Pearl and Hermes | | | | 50 Midway | | | | 50 Kure | | Rice Coral | Montipora capitata | 50 Nihoa | | Table Colui | monupora capitata | 50 Mokumanamana | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | | | | 50 Lisianski | | | | 50 Pearl and Hermes | | | | 50 Midway | | | | 50 Kure | | Winged Pearl Oyster | Pteria brunnea | 50 Nihoa | | 5 , | | 50 Mokumanamana | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | | | | 50 Lisianski | | | | 50 Pearl and Hermes | | | | 50 Midway
50 Kure | | | | 50 Kure | | Black Sea Cucumber | Holothuria atra | 50 Nihoa | | | | 50 Mokumanamana | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | | | | 50 Lisianski
50 Pearl and Hermes | | | | 50 Midway | | | | 50 Kure | | TarkSah | TT-1-11 | 60 N/1 | | Teatfish | Holothuria whitmaei | 50 Nihoa | | | | 50 Mokumanamana
50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | | | | 50 Lisianski | | | | 50 Pearl and Hermes | | | | 50 Midway | | DI ANTEC | | 50 Kure | | PLANTS Green seaweed | Halimeda kanaloana | 50 Nihoa | | · · · · · · · · · · · · · · | | 50 Mokumanamana | | | | 50 French Frigate Shoals | | | | 50 Gardner Pinnacles | | | | 50 Maro Reef | | | | 50 Laysan | 50 Lisianski 50 Pearl and Hermes 50 Midway 50 Kure #### **Opportunistic Sampling of Apex Predators** We request authority to collect and archive tissue specimens of less than one gram weight from the apex predators captured during tagging studies by Carl Meyer and colleagues. In the course of placing acoustic and satellite tags, a small piece of tissue is dislodged from the fish, and we seek to archive these under the mandate to make maximum use of sampling opportunities. Under no circumstances will these species be subject to directed fishing effort. Possible capture species include, but are not limited to: Tiger shark Galeocerdo cuvier Galapagos shark Grey reef shark Carcharhinus galapagensis Carcharhinus amblyrhynchos Carcharhinus melanopterus Blacktip shark Whitetip reef shark Triaenodon obesus Jack (Úlua) Green jobfish Caranx spp. Aprion virescens Sphyraena barracuda Barracuda Tuna Thunnus spp. #### Opportunistic sampling of new species In 2011 the Hiialakai cruise in September (pending funding) will include deep diving (> 130 feet) with trimix scuba technology. In these circumstances we wish to collect specimens of new fish and invertebrate species, for genetic characterization, taxonomic description, and vouchering in the Bishop Museum. These collections will allow us to characterize the biodiversity of the Monument, and will only be made in cases where species are sufficiently abundant (encounter rate of 5+ per hour) to sustain collections without adverse impact. Encounters with rarer species will be documented with photo-vouchers. New species A maximum of five specimens/species at each island or atoll Papahānaumokuākea Marine National Monument Compliance Information Sheet OMB Control # 0648-0548 Page 1 of 6 # Papahānaumokuākea Marine National Monument Compliance Information Sheet 1. Updated list of personnel to be covered by permit. List all personnel names and their roles here (e.g. John Doe, Diver; Jane Doe, Field Technician, Jerry Doe, Medical Assistant): August-September cruise: A maximum of six deep divers (Kosaki and colleagues) and three shallow divers (Bowen and colleagues), including PMNM personnel Permit activities will be conducted by a subset of the following persons. We have perhaps two berths on the August-September cruise for shallow reef sampling (0-30 m), intended for some combination of the P.I. (Bowen), associate professor Robert Toonen, post-doctoral researcher Iria Fernandez, graduate student Derek Skillings, and graduate student Richard Coleman, with possible assistance from Carl Meyer, William Love, and Keo Lopes. Deep reef collections (30 – 100 m) on the August-September cruise will be conducted by Randall Kosaki, Yannis Papastamatiou, and Richard Pyle, with possible assistance from Kelly Gleason, Corinne Kane, Ray Boland, Greg McFall, Keo Lopes, and Daniel Wagner. All personnel are certified divers with advanced (graduate level or higher) scientific training: Brian Bowen, P.I., research diver, collector, and P.I. Randall Kosaki, Chief Scientist, alternate field P.I., research diver and collector, PMNM Robert Toonen, research diver and collector, HIMB Kelly Gleason, research diver and collector, PMNM Corinne Kane, research diver and collector, PMNM Ray Boland, research diver and divermaster, NMFS Richard Pyle, research diver and collector, Bishop Museum Greg McFall, research diver and collector, ONMS Daniel Wagner, research diver and collector, HIMB Keo Lopes- research diver and collector, UH Mano Iria Fernandez-Silva, research diver and collector, HIMB Richard Coleman, research diver and collector, HIMB Alternate personnel: None Carl Meyer, research diver and collector, HIMB 2. Specific Site Location(s): (Attach copies of specific collection locations): William Love, research diver and collector, UH Dive Safety Program Yannis Papastamatiou, research diver and collector, University of Florida Papahānaumokuākea Marine National Monument Compliance Information Sheet OMB Control # 0648-0548 Page 2 of 6 Sampling will take place in a variety of reef and lagoonal habitats between 0 and 100 meters depth. Due to the nature of the research, and the unpredictability of the weather, the precise locations where samples will be collected at each location will not be known until sampling takes place. All submerged Locations: Nihoa Island, Necker Island, French Figate Shoals, Gardener Pinnacles, Maro Reef, Laysan Island, Lisianski Island, Pearl and Hermes Atoll, Midway Atoll, Kure Atoll. ## Approximate Locations: | Location | Longitude | Latitud | de | | | |---|---------------|---------|--------|---------|----------------| | Kure Atoll | -178.1970649 | 2000 | 28.558 | 3252355 | 80 | | Kure Atoll | -178.1962358 | 5400 | 28.299 | 583757 | ' 30 | | Kure Atoll
Kure Atoll | -178.4598788 | 4800 | 28.299 | 583757 | ' 30 | | Kure Atoll | -178.4607079 | 1400 | 28.557 | 423289 | 70 | | Midway Atoll | | | | 199699 | | | Midway Atoll | -177.1972112 | 9900 | 28.133 | 770553 | 10 | | Midway Atoll
Midway Atoll | -177.5280086 | 4100 | 28.134 | 599619 | 20 | | Midway Atoll | -177.5280086 | 4100 | 28.374 | 199699 | 20 | | Pearl and Herr | nes Atoll | -176.0 | 885098 | 1800 | 28.04643025580 | | Pearl and Herr | nes Atoll | -175.6 | 328916 | 2600 | 28.04539944540 | | Pearl and Herr | nes Atoll | -175.6 | 328916 | 2600 | 27.70729363750 | | Pearl and Herr | nes Atoll | -176.0 | 895406 | 2900 | 27.70626282710 | | Lisianski Islan
Lisianski Islan
Lisianski Islan | d -173.6 | 729257 | 0900 | 26.251 | 50771120 | | Lisianski Islan | d -173.6 | 729257 | 0900 | 25.839 | 42708400 | | Lisianski Islan | d -174.2 | 309515 | 5800 | 25.839 | 42708400 | | Lisianski Islan | d -174.2 | 309515 | 5800 | 26.251 | 50771120 | | Laysan Island | | | | 271798 | | | Laysan Island | -171.4772523 | 4300 | 25.655 | 966664 | 90 | | Laysan Island | -171.9791809 | 2500 | 25.657 | 715544 | 90 | | Laysan Island
Laysan Island
Maro Reef | -171.9791809 | 2500 | 25.962 | 020678 | 40 | | Maro Reef | -170.1813322 | 0600 | 25.699 | 688666 | 80 | | Maro Reef | -170.1795833 | 2600 | 25.215 | 248885 | 40 | | Maro Reef | -171.0050547 | 2200 | 25.215 | 248885 | 40 | | Maro Reef | -171.0050547 | 2200 | 25.699 | 688666 | 80 | | Gardner Pinna
Gardner Pinna
Gardner Pinna | cles -167.7 | 4832319 | 9300 | 25.260 | 70709440 | | Gardner Pinna | cles -167.7 | 5087047 | 7400 | 24.348 | 78019150 | | Gardner Pinna | cles -168.3 | 622181 | 1900 | 24.351 | 32747340 | | Gardner Pinna | cles -168.3 | 6476540 | 0100 | 25.260 | 70709440 | | French Frigate | Shoals -165.9 | 3465851 | 1400 | 23.946 | 30965900 | | French Frigate | Shoals -165.9 | 3465851 | 1400 | 23.564 | 21738120 | | French Frigate | Shoals -166.4 | 5685129 | 9400 | 23.564 | 21738120 | | French Frigate | Shoals -166.4 | 5685129 | 9400 | 23.946 | 30965900 | | Necker Island | -164.1362775 | 2700 | 23.717 | 054292 | 30 | | | |
| | | | Papahānaumokuākea Marine National Monument Compliance Information Sheet OMB Control # 0648-0548 Page 3 of 6 | Necker Island | -164.13373024500 | 23.20505064020 | |---------------|------------------|----------------| | Necker Island | -164.92084033700 | 23.20505064020 | | Necker Island | -164.92338761900 | 23.71960157420 | | Nihoa Island | -161.66031956700 | 23.23816530420 | | Nihoa Island | -161.66286684900 | 22.94013332760 | | Nihoa Island | -162.05005369100 | 22.94268060940 | | Nihoa Island | -162.05260097200 | 23.23561802240 | 3. Other permits (list and attach documentation of all other related Federal or State permits): None 3a. For each of the permits listed, identify any permit violations or any permit that was suspended, amended, modified or revoked for cause. Explain the circumstances surrounding the violation or permit suspension, amendment, modification or revocation. None 4. Funding sources (Attach copies of your budget, specific to proposed activities under this permit and include funding sources. See instructions for more information): This research is funded primarily by the PMNM-HIMB partnership, but additional funding comes from a variety of sources including Hawaii SeaGrant, NOAA, Seaver Institute, and the National Science Foundation. The HIMB currently has all of the lab equipment and expertise to successfully complete the analysis for this project. As detailed in the initial permit application there are adequate finances to complete this work. Detailed budget information is available upon request from the Monument Permit Coordinators. ## 5. Time frame: Activity start: 1 January 2005 Activity completion: 30 September 2012 Dates actively inside the Monument in 2011: From: 15 August 2011 To: 30 September 2011 Describe any limiting factors in declaring specific dates of the proposed activity at the time of application: Papahānaumokuākea Marine National Monument Compliance Information Sheet OMB Control # 0648-0548 Page 4 of 6 All dates are tentative and dependent upon ship and weather conditions. Ocean conditions strongly influence the dates that vessels can enter Monument waters, as well as when research can be conducted while in the Monument waters. Dates are also dependent on vessel and personnel schedules. Co-trustees will be notified of any changes to the dates currently provided Personnel schedule in the Monument: All personnel will remain on the NOAA vessel Hi'ialakai (or on small boats that are transported to the Monument by the main vessel) throughout the cruise duration. No individual will go on land to conduct this research. Schedule for August-September not yet determined. 6. Indicate (with attached documentation) what insurance policies, bonding coverage, and/or financial resources are in place to pay for or reimburse the Monument trustees for the necessary search and rescue, evacuation, and/or removal of any or all persons covered by the permit from the Monument: All divers are requested to carry DAN insurance in addition to UH workers compensation that will cover any diving related injury or an accident that occurs while on a diving research cruise. | while on a diving research cruise. | |---| | 7. Check the appropriate box to indicate how personnel will enter the Monument: | | ∑ Vessel Aircraft | | Provide Vessel and Aircraft information: | | | | NOAA vessel Hi'ialakai | | NOAA vessel Hi'ialakai 3. The certifications/inspections (below) must be completed prior to departure for vessels (and associated tenders) entering the Monument. Fill in scheduled date (attach documentation): | 9. Vessel information (NOTE: if you are traveling aboard a National Oceanic and Atmospheric Administration vessel, skip this question): Papahānaumokuākea Marine National Monument Compliance Information Sheet OMB Control # 0648-0548 Page 5 of 6 Vessel name: Vessel owner: Captain's name: IMO#: Vessel ID#: Flag: Vessel type: Call sign: Embarkation port: Last port vessel will have been at prior to this embarkation: Length: Gross tonnage: Total ballast water capacity volume (m3): Total number of ballast water tanks on ship: Total fuel capacity: Total number of fuel tanks on ship: Marine Sanitation Device: Type: Explain in detail how you will comply with the regulations regarding discharge in the Monument. Describe in detail. If applicable, attach schematics of the vessel's discharge and treatment systems: Other fuel/hazardous materials to be carried on board and amounts: Provide proof of a National Oceanic and Atmospheric Administration (NOAA) Office of Law Enforcement-approved Vessel Monitoring System (VMS). Provide the name and contact information of the contractor responsible for installing the VMS system. Also describe VMS unit name and type: VMS Email: Inmarsat ID#: ## 10. Tender information: On what workboats (tenders) will personnel, gear and materials be transported within the Monument? List the number of tenders/skiffs aboard and specific types of motors: TBD by NOAA crew aboard vessel Hi'ialakai. Generaly, two inboard diesel jet boats and a zodiac with an outboard gasoline engine. # **Additional Information for Land Based Operations** Papahānaumokuākea Marine National Monument Compliance Information Sheet OMB Control # 0648-0548 Page 6 of 6 | 11. Proposed movement of personnel, gear, materials, and, if applicable, samples: | |---| | 12. Room and board requirements on island: | | 13. Work space needs: | | | | DID YOU INCLUDE THESE? | | Map(s) or GPS point(s) of Project Location(s), if applicable | | Funding Proposal(s) | | Funding and Award Documentation, if already received | | Documentation of Insurance, if already received | | Documentation of Inspections | | Documentation of all required Federal and State Permits or applications for permits | NEIL ABERCROMBIE ### STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES **DIVISION OF AQUATIC RESOURCES** 1151 PUNCHBOWL STREET, ROOM 330 HONOLULU, HAWAII 96813 June 9, 2011 TO: Division of Aquatic Resources File THROUGH: William J. Aila, Jr., Chairperson FROM: Francis Oishi Division of Aquatic Resources DECLARATION OF EXEMPTION FROM THE PREPARATION OF AN ENVIRONMENTAL ASSESSMENT UNDER THE AUTHORITY OF CHAPTER 343, HRS AND CHAPTER 11-200 HAR, FOR PAPAHĀNAUMOKUĀKEA MARINE NATIONAL MONUMENT RESEARCH PERMIT TO DR. BRIAN BOWEN, UNIVERSITY OF HAWAII, HAWAII INSTITUTE OF MARINE BIOLOGY, FOR ACCESS TO STATE WATERS TO CONDUCT GENETIC SURVEY ACTIVITIES **UNDER PERMIT PMNM-2010-038** The following permitted activities are found to be exempted from preparation of an environmental assessment under the authority of Chapter 343, HRS and Chapter 11-200, HAR: #### Project Title: Papahānaumokuākea Marine National Monument Research Permit to Dr. Brian Bowen, University of Hawaii, Hawaii Institute of Marine Biology, for Access to State Waters to Conduct Genetic Survey Activities. Permit Number: PMNM-2011-038 ## Project Description: The research permit application, as described below, would allow entry and activities to occur in Papahānaumokuākea Marine National Monument (Monument), including the NWHI State waters from June 1, 2011 through October 31, 2011. This project is to conduct a genetic survey of reef fishes, invertebrates and algae which would address the level of isolation between deep and shallow reef ecosystems across the Hawaiian Archipelago. The activities in the permit include collecting target reef fish, invertebrate and algal species. The target species were chosen to be abundant and widespread in the archipelago, easy to identify, and easy to collect. No more than 10 specimens/species would be taken at any single location. Whenever possible, the permittee samples fishes non-lethally and removes a rice-grain sized piece of fin and releases the animal in the location from which it was collected. Although significant progress has been made in nonlethal sampling, most specimens are collected with polespears. Nonlethal tissue biopsies will be collected from all invertebrates, with the exception of oysters, which are collected whole. Algal collections will also be biopsied non-lethally. WILLIAM J. AILA. JR. CHAIRJERSON BOARD OF LAND AND NATURAL RESOURCES COMMISSION ON WATER RESOURCE MANAGEMENT WILLIAM M. TAM AQUATIC RESOURCES BOATING AND OCEAN RECREATION BUREAU OF CONVEYANCES COMMESSION ON WATER RESOURCE MANAGEMENT CONSERVATION AND COASTAL LANDS CONSERVATION AND RESOURCES ENFORCEMENT ENGINEERING FORESTRY AND WILDLIEF HISTORIC PRESERVATION KAHOOLAWE ISLAND RESERVE COMMISSION LAND STATE PARKS The proposed activities are in direct support of the Monument Management Plan's priority management need 3.1 – Understanding and Interpreting the NWHI (through action plan 3.1.1 – Marine Conservation Science). This action plan specifies to "measure connectivity and genetic diversity of key species to enhance management decisions." Activities to support marine conservation science, including connectivity and genetic diversity surveys such as those to be carried out by the permittee, are also addressed in the Monument Management Plan Environmental Assessment (December 2008) which resulted in FONSI. This EA summarizes that understanding the genetic diversity of species groups and how these populations change could be helpful to forecast, prepare for and mediate potential threats to populations within the Monument (PMNM MMP Vol. 2, p.171). Identification of genetic diversity and connectivity of reef fishes, such as those proposed, would enhance this understanding. ## **Consulted Parties:** The permit application was sent out for review and comment to the following scientific and cultural entities: Hawaii Division of Aquatic Resources, Hawaii Division of Forestry and Wildlife,
Papahānaumokuākea Marine National Monument (NOAA/NOS), NOAA Pacific Islands Regional Office (NOAA-PIRO), United States Fish and Wildlife Service Hawaiian and Pacific Islands National Wildlife Refuge Complex Office, and the Office of Hawaiian Affairs (OHA). In addition, the permit application has been posted on the Monument Web site since March 10th, giving the public an opportunity to comment. The application was posted within 40 days of its receipt, in accordance with the Monument's Public Notification Policy. # **Exemption Determination:** After reviewing HAR § 11-200-8, including the criteria used to determine significance under HAR § 11-200-12, DLNR has concluded that the activities under this permit would have minimal or no significant effect on the environment and that issuance of the permit is categorically exempt from the requirement to prepare an environmental assessment based on the following analysis: - 1. All activities associated with this permit, including the sampling and subsequent genetic and taxonomic study of reef fishes, have been evaluated as a single action. As a preliminary matter, multiple or phased actions, such as when a group of actions are part of a larger undertaking, or when an individual project is precedent to or represents a commitment to a larger project, must be grouped together and evaluated as a single action. HAR § 11-200-7. Since this permit involves an activity that is precedent to a later planned activity, i.e. the genetic study of patterns of reef fish, invertebrate and algal dispersal, the categorical exemption determination here will treat all planned activities as a single action. - 2. The Exemption Class for Scientific Research with no Serious or Major Environmental Disturbance Appears to Apply. Chapter 343, HRS, and § 11-200-8, HAR, provide for a list of classes of actions exempt from environmental assessment requirements. HAR §11-200-8.A.5. exempts the class of actions which involve "basic data collection, research, experimental management, and resource evaluation activities which do not result in a serious or major disturbance to an environmental resource." This exemption class has been interpreted to include fish collection for marine surveys and research, as well as research related to the development and management of various aquatic organisms, including life history, migration, and growth studies, such as those being proposed. In addition Exemption Class #5, Exempt Item #5 includes "surveys, censuses, inventories, studies . . . collection, culture and captive propagation of aquatic biota." DEPARTMENT OF LAND & NATURAL RESOURCES, EXEMPTION LIST FOR THE DIVISION OF FISH AND GAME 3-4 (January 19, 1976). The proposed sampling and genetic connectivity study activities here appear to fall squarely under the exemption class identified under HAR § 11-200-8.A.5., and are succinctly described under the 1976 exemption list, as involving the collection of aquatic animals to study migration patterns and life cycles. As discussed below, no significant disturbance to any environmental resource is anticipated from the sampling of common reef fish, invertebrate and algal species. Thus, so long as the below considerations are met, an exemption class should include the action now contemplated. 3. Cumulative Impacts of Actions in the Same Place and Impacts with Respect to the Potentially Particularly Sensitive Environment Will Not be Significant. Even where a categorical exemption appears to include a proposed action, the action cannot be declared exempt if "the cumulative impact of planned successive actions in the same place, over time, is significant, or when an action that is normally insignificant in its impact on the environment may be significant in a particularly sensitive environment." HAR § 11-200-8.B. To gauge whether a significant impact or effect is probable, an exempting agency must consider every phase of a proposed action, any expected primary and secondary consequences, the long-term and short-term effects of the action, the overall and cumulative effect of the action, and the sum effects of an action on the quality of the environment. HAR § 11-200-12. Examples of actions which commonly have a significant effect on the environment are listed under HAR § 11-200-12. No prior studies of this type have been undertaken to date. The applicant outlined the entire shallow-water set of reef fish collections in his first permit application, and subsequent renewal applications have been for a subset of the same initial permit activities because the field team was unable to complete the permitted tasks. Additional deep-water reef fish collections have been requested by the Applicant and approved in previous years as technological advances in SCUBA make these collections possible. Requested invertebrate and algal collections are a continuation of previous permitted activities from Dr. Robert Toonen, a collaborator and coprincipal investigator with the Applicant. The Applicant has been conducting this type of work in the State Marine Refuge since its inception, with no deleterious effects being noted. With this in mind, significant cumulative impacts are not anticipated as a result of this activity, and numerous safeguards further ensure that the potentially sensitive environment of the project area will not be significantly affected. All activities will be conducted in a manner compatible with the management direction of the Monument Proclamation in that the activities do not diminish monument resources, qualities, and ecological integrity, or have any indirect, secondary, cultural, or cumulative effects. The joint permit review process did not reveal any anticipated indirect or cumulative impacts, nor did it raise any cultural concerns, that would occur as a result of these activities. The activities would be conducted from the NOAA Ship HI'IALAKAI (PMNM-2011-009) during its September cruise. The following table lists additional activities that are anticipated to take place on this cruise pending approval of permit applications. Table 1. Concurrent Projects Aboard NOAA SHIP HI'IALAKAI | Permit | Purpose and Scope | Location | |---|---|---------------| | PMNM-2011-009
NOAA Ship
HI'IALAKAI | The permit allows NOAA Ship HI'IALAKAI entry into PMNM. Personnel aboard the vessel will be permitted under separate permits. | All locations | | PMNM-2011-018
Meyer (proposed) | The proposed action is to allow collection of reef fish and tagging of top predators as well as acoustic receiver deployment | All locations | | PMNM-2011-019
Valenzuela
(proposed) | The proposed action is to allow filming activities for use on public television stations | All locations | | PMNM-2011-026
Rossiter (proposed) | The proposed action is to allow collection of live coral and fish. | All locations | | PMNM-2011-038
Nakamoto
(proposed) | The proposed action is to allow filming for Hawaii Skin Diver publications | All locations | | PMNM-2011-42
Kosaki (proposed) | The proposed action is to allow collection of unidentifiable specimens located on deep reefs | All locations | | PMNM-2011-24
Gleason (proposed) | The proposed action is to survey and monitor maritime heritage sites | All locations | Three additional proposed activities include collections of fish and/or algal species during this time span and need to be considered when reviewing this proposed collection. It can be determined that collections proposed by Kosaki in mesophotic depths will not overlap with the Applicant's proposed fish, invertebrate or algal collections as Kosaki is only requesting collection of unknown or unidentifiable species. Due to both the exploratory and baseline nature of Meyer's proposed collections at depth, an exacting list of proposed collections is unavailable. Therefore there is the potential to overlap with Meyer's proposed collections of reef fishes at French Frigate Shoals and Pearl and Hermes Atoll on deep coral reefs. To mitigate this potential overlap and prevent duplicative sampling, species will be shared between both Bowen and Meyers. One shallow reef fish species (Parupeneus multifasciatus) is proposed to be collected by both Meyer and Bowen. Meyer and Bowen have requested to collect this species from different locals, so again no sampling overlap is present. Specifically, Meyer proposes collection reef fishes at Pearl and Hermes Atoll and French Frigate Shoals, whereas Bowen proposes collection of this species at Gardner Pinnacles, Laysan Island, Lisianski Island and Maro Reef thus no overlapping collections are proposed. Lastly, collections by Rossiter do not overlap with collections by the Applicant for either fish, invertebrate or algal species. The culmination of these permits, and their disparate activities, occurring throughout the Monument over a 4-week period, is not anticipated to have significant cumulative impacts. The June 9, 2011 Page 5 NOAA Ship OSCAR ELTON SETTE (PMNM-2011-008) may also be in the Monument during this time frame facilitating needs of the monk seal camps under the management permit (PMNM-2011-001). Since no significant cumulative impacts or significant impacts with respect to any particularly sensitive aspect of the project area are anticipated, the categorical exemptions identified above should remain applicable. 4. Overall Impacts will Probably be Minimal and Insignificant. Any foreseeable impacts from the proposed activity will probably be minimal, and further mitigated by general and specific conditions attached to the permit. Specifically, all research activities covered by this permit will be carried out with strict safeguards for the natural, historic, and cultural resources of the Monument as required by Presidential Proclamation 8031, other applicable law and agency policies
and standard operating procedures. The current request is an attempt to fulfill activities previously permitted by Dr.s Bowen and Toonen of HIMB. The sampling proposed is negligible compared to both the acceptable harvest rates of these common reef fish, invertebrate and algal species in the Main Hawaiian Islands, and the estimated consumption of these same species by predatory fishes such as Ulua at each location within the Monument. <u>Conclusion</u>. Upon consideration of the permit to be approved by the Board of Land and Natural Resources, the potential effects of the above listed project as provided by Chapter 343, HRS and Chapter 11-200 HAR, have been determined to be of probable minimal or no significant effect on the environment and exempt from the preparation of an environmental assessment. | William J. Aila, Jr. | Date | |-------------------------------------|------| | Board of Land and Natural Resources | |